Grand Energy and Environmental Challenges

All technologies envisioned to meet future energy and environmental demands <u>require advances in</u> fundamental Geosciences:

- * Fossil (oil, gas coal)
- * Nuclear
- * Hydrogen
- * Biomass
- * Renewable (wind, solar geothermal)
- * Water supply

(modified from R. E. Smalley, Rice University BES Symposium 4/29/03)

Long Term Goals: Develop fundamental understanding of complex, coupled processes that will permit imaging and manipulation of the

ecosphere for improved management and exploitation

- * sustainable resource development (water, fossil fuels)
 - * environmental remediation
 - * climate change prediction
 - * safe nuclear waste disposal

Scaling

Process Prediction

Ecosphere Manipulation

Crosscutting Obstacles-

- * next generation **sensor** development and emplacement
- * imaging and multi-scale, multi-sensor data integration
- *model <u>prediction</u> of processes over various length and time scales and <u>uncertainty</u> quantification

* <u>ecosphere manipulation</u> for sustainable resource development and environmental remedation

Implementation Mechanism

- Underground and surface facilities focused on critical crosscutting issues
 - Eliminate major roadblocks for improving current and advanced energy production
 - Balance adequate environmental protection with economic growth
 - Use natural analogs for complex process understanding
- Draw on unique expertise and form critical mass through integrated "Manhattan" style projects
 - Nano-scale to macro-scale
 - Integrate diverse expertise to supply innovative and cost effective solutions

Impact

- Advanced technology base to support:
 - Optimal domestic oil and gas extraction
 - CO₂ sequestration
 - Nuclear waste disposal
 - Optimize and protect water resources
 - Environmental cleanup
 - Climate Change
 - Renewable energy
 - Advanced energy sources
 - Coal and mineral resource utilization

Summary

- For the next 50 years we will be in a carbon constrained energy supply
 - Broad implications on current domestic resources and economic vitality
- We must smoothly transition to other energy sources
 - Optimize current domestic resources while developing new ones (no magic bullets)
- Fundamental geoscience research is critical for supporting every envisioned technology essential for this transition
- We are running out of time, new paradigms must be developed for meeting the challenge
 - Link fundamental research to applied needs
 - Form critical mass in selected projects to address major rodablocks